
Chem 108: Lab

Week 12

Sign in
Alcohol Distillation
To do with your Fermentation partner:
Turn in 7-Solution Report form
and
Post Lab Questions

	avg	72.3%	%
	std dev +/-	17.6	
	Normalization	125,	
\neg		-	_

7 Solutions Report pp. 76-80 & Post Lab Questions

Due Today

Post Lab Questions: 7-Solution Problem http://chemconnections.org/general/chem120/solutions-mixes.108.html 1. If the maximum concentration of a saturated sodium chloride solution is 5.9M, how many liters of w would a Peruvian salt farmer need to process in order to produce one 50.0 kilogram bag of salt. (Ass that there are no other salts present. Show your calculation.) 2. If the Peruvian water has a TDS of 10.0 grams per liter of water, would it be within the safe limits of drinking water by U.S. standards? (Explain your answer.) 3. The following table includes chemicals that may be found in tap water. Complete the table for allow limits. Allowable Limit Nitrate Fluoride Mercury				
http://chemconnections.org/general/chem120/solutions-mixes.108.html 1. If the maximum concentration of a saturated sodium chloride solution is 5.9M, how many liters of w would a Peruvian salt farmer need to process in order to produce one 50.0 kilogram bag of salt. (Ass that there are no other salts present. Show your calculation.) 2. If the Peruvian water has a TDS of 10.0 grams per liter of water, would it be within the safe limits of drinking water by U.S. standards? (Explain your answer.) 3. The following table includes chemicals that may be found in tap water. Complete the table for allow limits. Allowable Limit Nitrate Fluoride	Names:	Dont Lab C		ution Dualdon
would a Peruvian salt farmer need to process in order to produce one 50.0 kilogram bag of salt. (Ass that there are no other salts present. Show your calculation.) 2. If the Peruvian water has a TDS of 10.0 grams per liter of water, would it be within the safe limits of drinking water by U.S. standards? (Explain your answer.) 3. The following table includes chemicals that may be found in tap water. Complete the table for allow limits. Allowable Limit Nitrate Fluoride	http://ch	hemconnections.c	org/general/chem12	20/solutions-mixes.108.html
drinking water by U.S. standards? (Explain your answer.) 3. The following table includes chemicals that may be found in tap water. Complete the table for allow limits. Allowable Limit	would a Peruvian sal	lt farmer need to p	rocess in order to pro	oduce one 50.0 kilogram bag of salt. (Assum
drinking water by U.S. standards? (Explain your answer.) 3. The following table includes chemicals that may be found in tap water. Complete the table for allow limits. Allowable Limit Nitrate Fluoride	If the Peruvian water	r has a TDS of 100	grams per liter of v	water would it be within the safe limits of
limits. Allowable Limit Nitrate Fluoride				and the same and t
Nitrate Fluoride		includes chemicals	that may be found i	in tap water. Complete the table for allowabl
Fluoride			Allowable Limit	
		Nitrate		
Mercury				
· .				
Lead		Lead		
4. What were the highest tested levels of lead in Flint Michigan's drinking water during the crisis?	. What were the highe	est tested levels of	lead in Flint Michiga	an's drinking water during the crisis?
5. What was the length of time that Flint residents were exposed to higher than allowable levels of lead	. What was the length	of time that Flint	residents were expos	sed to higher than allowable levels of lead?
6. What are the neurological effects of lead exposure particularly on children and infants?	. What are the neurolo	ogical effects of lea	ad exposure particula	arly on children and infants?

Seven Solutions Post Lab Questions http://chemconnections.org/general/chem120/solutions-mixes.108.html

QUESTION

Solutions: molarity & volume → mass

How many grams of NaCl are contained in 350. mL of a 0.250 M solution of sodium chloride?

- A) 41.7 g
- B) 5.11 g
- C) 14.6 g
- D) 87.5 g
- E) None of these

ANSWER

B) 5.11 g

Seven Solutions Post Lab Questions http://chemconnections.org/general/chem120/solutions-mixes.108.html

Volume (L) times concentration (mol/L) gives moles. Moles are then converted to grams multiplying by the molar mass.

Chemical Reactions

To DO Today

Separating the Ethanol Produced

Fermentation / Distillation pp.63-67

http://www.piney.com/BabNinkasi.html)

http://chemconnections.org/general/chem108/Beer-Ninkasi-Dana%20Garves.pdf

Career ladder

Dana Garves

This bench chemist built her own business around the craft beer boom

chemist with an interesting career path? Tell C&EN about it at cenm. ag/careerladder.

CRAIG BETTENHAUSEN, C&EN WASHINGTON Biological Reactions: Enzyme Catalysts

An interest in chemistry

father was a mechanic for Boeing. "My parents are

president. And also, can you chaperone?" "Garves wasn't embarrassed, but science wasn't a big part of her family's daily lives before that. Her mother worked in video game testing, and her

supporters, and I would not be where I am today with she says. Chemistry was one of the subjects she str the most in high school, but she found the "Aha!" dictive and the interactions of subatomic particles " beautiful." Garves majored in chemistry at the Univ gon. "I loved the analytical side; I love being in the I "I've always loved being on a bench working with rh

As an undergrad, Garves

Industry experience

be used in the classroom, with an eye toward a career in teaching. But she soon found that "the teachers I liked the most in college all had industry

graduation, she landed a job with a water quality testing lab in Oregon, "I was bored to tears," she says. But the experience gave her an appreciation for quality control. "I fell in love with the rigidness of it." She knew she liked OC and liked chemistry, but how could she make it interesting?

Today

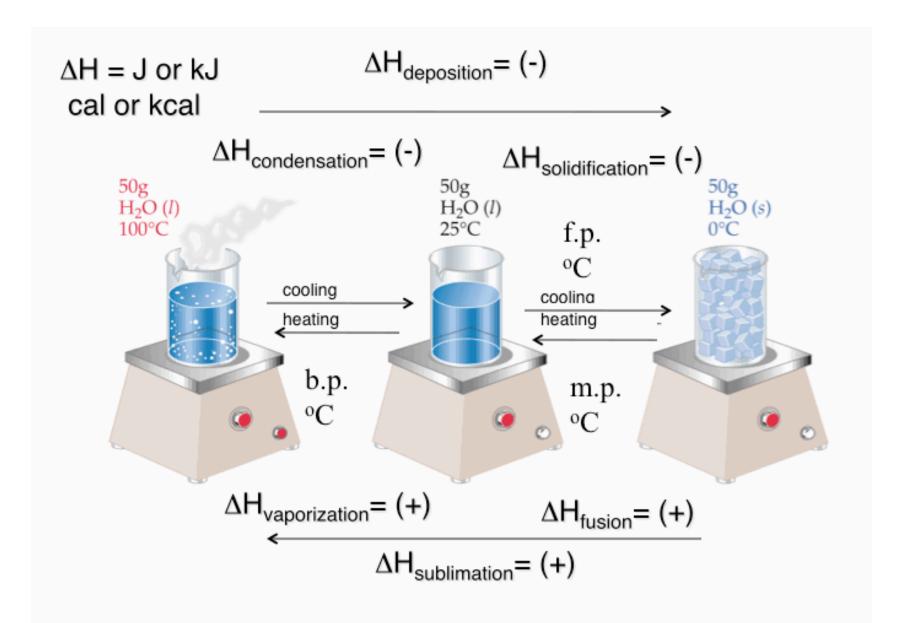
Brewing entrepreneur

Garves saw an opportunity in beer analysis. In 20 rate for an alcohol percent (alcohol by volume, or at contract labs was around \$200, and results too five days and two weeks to arrive. "That's too long, "That beer is already in pint glasses." She calculate

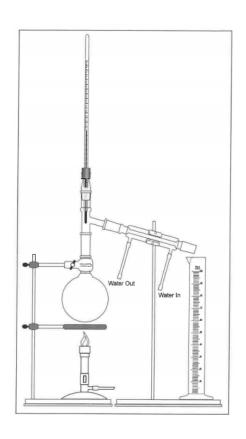
do it much faster and for just \$20. So that same Ninkasi, cashed out her 401(k) to raise capital, and started Oregon BrewLab in her garage. "It was very scary. Working for a larger brewery is a pretty cushy job," Garves says. "I had to adjust to buying beer again, for one thing." At the end of the first year, she had just 50 clients and had to bartend and work odd jobs to make ends meet. Four years in, she has more than 200 clients and says she may hire help. But any assistant will be in the office; she wants to do the bench work herself

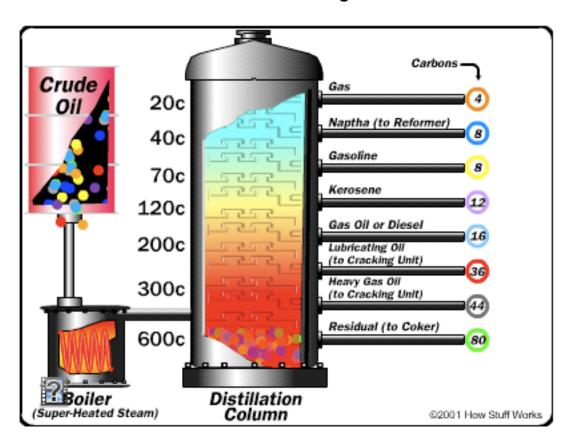
2011

A move to the beer world


Searching Craigslist, Garves found an unattributed opening in the QC lab of a beer brewery. She applied through the listing and also researched every brewery in the area until she found one, Ninkasi Brewing, with a matching opening advertised. She sent

her materials to the companydirectly, then "went in person and pestered them until they gave me an interview." she says. Garves got the job and spent four years building Ninkasi's chemistry and sensory labs. She also got to work on exciting side projects, such as when the firm sent yeast into orbit and found it could


survive the rigors of space travel (right). Around 2012, other nearby breweries starting asking for her help. Soon, requests for analysis favors started arriving by mail, and brewers from across the country would visit with samples in need of testing.


Energy: Heat: Enthalpy (ΔH)

Distillation

http://chemconnections.org/general/movies/htmlswf/oil-refining.swf

Oil Refining:

http://science.howstuffworks.com/oil-refining4.htm

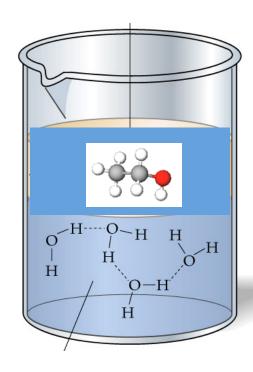
QUESTION

Answer either: A) endothermic, or: B) exothermic for each of the following 5 changes of physical state.

- 1. Fusion
- 2. Vaporization
- 3. Condensation
- 4. Sublimation
- 5. Liquid → Solid

A) endothermic

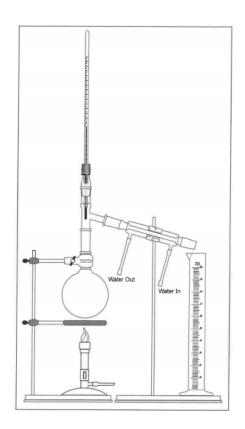
Distillation involves heating.


How could distillation be done @ lower temperatures?

One of many products being sold.

Water: "The Universal" Solvent

The ethanol product is **miscible** in water and both vaporize when the solution is distilled.


Theoretical & Percent Yield

http://chemconnections.org/general/movies/htmlswf/oil-refining.swf

Density and Percent Alcohol of the Distillate

While the distillate is cooling weigh a clean dry vial and cap or small beaker and record the mass. Obtain a 20 or 25 mL pipet (each partner should have a vial or small beaker and each partner must use a different volume) and rinse it thoroughly with deionized water. Draw distillate into the pipet until the bulb is about one—third full. Rinse all parts of the pipet with the distillate and return the it to the distillate in the flask. You don't want to discard any alcohol at this point. Rinse the pipet a second time with distillate and return it to the flask. Pipet 20 or 25 mL of distillate (depending on the volume of your pipet) into the weighed vial and cap the vial or into a small beaker. Weigh the vial or beaker and contents and record the mass. If your density and your partner's don't agree within 0.005 g/ mL repeat the procedure. When you have two densities that agree, record your partner's density and average them. Determine the percent alcohol to 0.1 % from the table of densities.

The ethanol produced in the fermentation is distilled along with the water used. The liquid collected is ethanol mixed in with the water, which is the solvent. The amount dissolved will be calculated by experimentally determining the solution's density.

What is a solution's concentration?

Solution Concentrations

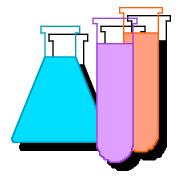
Concentration is a measure of the amount of solute dissolved.

molarity =
$$M = \frac{\text{moles solute}}{\text{liters solution}}$$

Some other common units include percentage by mass, percentage by volume, (which relates to alcoholic proof), parts per million, parts per billion, and molality. The definition of each provides the basis for calculations with that unit.

% by mass =
$$\frac{\text{mass solute}}{\text{mass solution}} \times 100$$

% by volume = $\frac{\text{volume solute}}{\text{volume solution}} \times 100$
[Proof = % by volume x 2]


parts per million = ppm =
$$\frac{\text{mass solute}}{\text{mass solution}} \times 10^6$$

parts per billion = ppb = $\frac{\text{mass solute}}{\text{mass solution}} \times 10^9$
molality = m = $\frac{\text{moles solute}}{\text{kilograms solvent}}$

Solution Concentrations

✿ Concentration in mass percent is common.

Mass % = Mass solute / [Mass solute + Mass solvent] x100

✿ What is the mass % of 65.0 g of glucose dissolved in 135 g of water?

% Ethanol from Density

PERCENT ETHANOL FOR VARIOUS DENSITIES

% ethanol by mass	Density (g/mL)	% ethanol by mass	Density (g/mL)	% ethanol by mass	Density (g/mL)
0.0	0.998	35.0	0.945	69.0	0.870
1.0	0.996	36.0	0.943	70.0	0.868
2.0	0.995	37.0	0.943		0.865
3.0	0.993			71.0	
4.0	0.993	38.0	0.939	72.0 73.0	0.863
5.0	0.989	40.0			
6.0	0.988		0.935	74.0	0.858
		41.0	0.933	75.0	0.856
7.0	0.986	42.0	0.931	76.0	0.853
8.0	0.985	43.0	0.929	77.0	0.851
9.0	0.983	44.0	0.927	78.0	0.848
10.0	0.982	45.0	0.925	79.0	0.846
11.0	0.980	46.0	0.923	0.08	0.843
12.0	0.979	47.0	0.920	81.0	0.841
13.0	0.978	48.0	0.918	82.0	0.838
14.0	0.976	49.0	0.916	83.0	0.836
15.0	0.975	50.0	0.914	84.0	0.833
16.0	0.974	51.0	0.912	85.0	0.831
17.0	0.973	52.0	0.909	86.0	0.828
18.0	0.971	53.0	0.907	87.0	0.826
19.0	0.970	54.0	0.905	88.0	0.823
20.0	0.969	55.0	0.903	89.0	0.821
21.0	0.967	56.0	0.900	90.0	0.818
22.0	0.966	57.0	0.898	91.0	0.815
23.0	0.965	58.0	0.896	92.0	0.813
24.0	0.963	59.0	0.893	93.0	0.810
25.0	0.962	60.0	0.891	94.0	0.807
26.0	0.960	61.0	0.889	95.0	0.804
27.0	0.959	62.0	0.887	96.0	0.801
28.0	0.957	63.0	0.884	97.0	0.798
29.0	0.955	64.0	0.882	98.0	0.795
30.0	0.954	65.0	0.879	99.0	0.792
31.0	0.952	66.0	0.877	100.0	0.789
32.0	0.950	67.0	0.875		
33.0	0.949	68.0	0.872		
34.0	0.947				

Calculations


Determination of Percent Yield

From the density, volume, and percent alcohol of the distillate, calculate the actual yield in grams of ethanol. From the balanced equation for the reaction, given in the background, and the mass of sucrose fermented, calculate the theoretical yield. Finally, calculate the percent that the actual yield is of the theoretical.

$$C_{12}H_{22}O_{11} + H_2O \rightarrow 4 C_2H_5OH + 4 CO_2$$

sucrose

ethanol

Example

Reactant:

	g (grams)
Mass, sucrose + container	
- Mass container (Tare)	
Mass, sucrose	24.55 a

Simple Distillation:

Temperature Range	°C to °C
Volume of Distillate Collected (mL)	52.2 mL

Density, Mass & Percent Yield of Alcohol in the Distillate:

9.90g| 10.00mL

Volume of pipet (mL)		
Mass of beaker + distillate (grams)		
Mass of beaker (grams)		
Mass of distillate (grams)		
Density (g/mL)	990 g/m	L
% Percent ethyl alcohol (from Table)		
Total mass of ethyl alcohol produced (calculated)		
% Percent Yield ethyl alcohol (calculated)		

% ethanol by mass Density (g/mL) % ethanol by (g/mL) % ethanol by (g/mL) Density (g/mL) 0.0 0.998 35.0 0.945 69.0 0.870 1.0 0.996 36.0 0.943 70.0 0.868 2.0 0.995 37.0 0.941 71.0 0.865 3.0 0.993 38.0 0.939 72.0 0.863 4.0 0.991 39.0 0.937 73.0 0.860 5.0 0.989 40.0 0.935 74.0 0.858 6.0 0.988 41.0 0.933 75.0 0.856 7.0 0.986 42.0 0.931 76.0 0.853 8.0 0.985 43.0 0.929 77.0 0.851 9.0 0.983 44.0 0.927 78.0 0.848 11.0 0.980 46.0 0.923 80.0 0.843 12.0 0.979 47.0 0.920 81.0 0.841		PERCENT	ETHANOL FO	R VARIOUS I	DENSITIES	
0.0 0.908 35.0 0.945 69.0 0.870 1.0 0.996 36.0 0.943 70.0 0.868 2.0 0.995 37.0 0.941 71.0 0.865 3.0 0.993 38.0 0.939 72.0 0.863 4.0 0.991 39.0 0.937 73.0 0.860 5.0 0.989 40.0 0.935 74.0 0.858 6.0 0.988 41.0 0.933 75.0 0.856 7.0 0.986 42.0 0.931 76.0 0.853 8.0 0.985 43.0 0.929 77.0 0.851 9.0 0.983 44.0 0.927 78.0 0.848 11.0 0.980 46.0 0.923 80.0 0.843 12.0 0.979 47.0 0.920 81.0 0.841 13.0 0.978 48.0 0.918 82.0 0.838 14.0 0.975 <td>% ethanol by</td> <td></td> <td>% ethanol by</td> <td>•</td> <td></td> <td></td>	% ethanol by		% ethanol by	•		
1.0 0.996 36.0 0.943 70.0 0.868 2.0 0.995 37.0 0.941 71.0 0.865 3.0 0.993 38.0 0.939 72.0 0.863 4.0 0.991 39.0 0.937 73.0 0.860 5.0 0.989 40.0 0.935 74.0 0.858 6.0 0.988 41.0 0.933 75.0 0.856 7.0 0.986 42.0 0.931 76.0 0.853 8.0 0.985 43.0 0.929 77.0 0.851 9.0 0.983 44.0 0.927 78.0 0.848 10.0 0.982 45.0 0.925 79.0 0.848 11.0 0.980 46.0 0.923 80.0 0.843 12.0 0.979 47.0 0.920 81.0 0.841 13.0 0.978 48.0 0.918 82.0 0.838 14.0 0.976 <td>mass</td> <td>(g/mL)</td> <td>mass</td> <td>(g/mL)</td> <td>mass</td> <td>(g/m L)</td>	mass	(g/mL)	mass	(g/mL)	mass	(g/m L)
2.0 0.995 37.0 0.941 71.0 0.865 3.0 0.993 38.0 0.939 72.0 0.863 4.0 0.991 39.0 0.937 73.0 0.860 5.0 0.989 40.0 0.935 74.0 0.858 6.0 0.988 41.0 0.933 75.0 0.856 7.0 0.986 42.0 0.931 76.0 0.853 8.0 0.985 43.0 0.929 77.0 0.851 9.0 0.983 44.0 0.927 78.0 0.848 10.0 0.982 45.0 0.925 79.0 0.848 11.0 0.980 46.0 0.923 80.0 0.843 12.0 0.979 47.0 0.920 81.0 0.841 13.0 0.978 48.0 0.918 82.0 0.838 14.0 0.976 49.0 0.916 83.0 0.831 15.0 0.975 </td <td>0.0</td> <td>0.998</td> <td>35.0</td> <td>0.945</td> <td>69.0</td> <td>0.870</td>	0.0	0.998	35.0	0.945	69.0	0.870
3.0 0.993 38.0 0.939 72.0 0.863 4.0 0.991 39.0 0.937 73.0 0.860 5.0 0.989 40.0 0.935 74.0 0.858 6.0 0.988 41.0 0.933 75.0 0.856 7.0 0.986 42.0 0.931 76.0 0.853 8.0 0.985 43.0 0.929 77.0 0.851 9.0 0.983 44.0 0.927 78.0 0.848 10.0 0.982 45.0 0.925 79.0 0.846 11.0 0.980 46.0 0.923 80.0 0.841 12.0 0.979 47.0 0.920 81.0 0.841 13.0 0.978 48.0 0.918 82.0 0.838 14.0 0.976 49.0 0.916 83.0 0.836 15.0 0.975 50.0 0.914 84.0 0.833 18.0 0.971<	1.0	0.996	36.0	0.943	70.0	0.868
4.0 0.991 39.0 0.937 73.0 0.860 5.0 0.989 40.0 0.935 74.0 0.858 6.0 0.988 41.0 0.933 75.0 0.856 7.0 0.986 42.0 0.931 76.0 0.853 8.0 0.985 43.0 0.929 77.0 0.851 9.0 0.983 44.0 0.927 78.0 0.848 10.0 0.982 45.0 0.925 79.0 0.846 11.0 0.980 46.0 0.923 80.0 0.843 12.0 0.979 47.0 0.920 81.0 0.841 13.0 0.978 48.0 0.918 82.0 0.838 14.0 0.976 49.0 0.916 83.0 0.836 15.0 0.974 51.0 0.912 85.0 0.831 17.0 0.973 52.0 0.909 86.0 0.828 18.0 0.971	2.0	0.995	37.0	0.941	71.0	0.865
5.0 0.989 40.0 0.935 74.0 0.858 6.0 0.988 41.0 0.933 75.0 0.856 7.0 0.986 42.0 0.931 76.0 0.853 8.0 0.985 43.0 0.929 77.0 0.851 9.0 0.983 44.0 0.927 78.0 0.848 10.0 0.982 45.0 0.925 79.0 0.846 11.0 0.980 46.0 0.923 80.0 0.843 12.0 0.979 47.0 0.920 81.0 0.841 13.0 0.978 48.0 0.918 82.0 0.838 14.0 0.976 49.0 0.916 83.0 0.836 15.0 0.975 50.0 0.914 84.0 0.833 16.0 0.974 51.0 0.912 85.0 0.831 17.0 0.973 52.0 0.909 86.0 0.828 18.0 0.97	3.0	0.993	38.0	0.939	72.0	0.863
6.0 0.988 41.0 0.933 75.0 0.856 7.0 0.986 42.0 0.931 76.0 0.853 8.0 0.985 43.0 0.929 77.0 0.851 9.0 0.983 44.0 0.927 78.0 0.848 10.0 0.982 45.0 0.925 79.0 0.846 11.0 0.980 46.0 0.923 80.0 0.843 12.0 0.979 47.0 0.920 81.0 0.841 13.0 0.978 48.0 0.918 82.0 0.838 14.0 0.976 49.0 0.916 83.0 0.836 15.0 0.975 50.0 0.914 84.0 0.833 16.0 0.974 51.0 0.912 85.0 0.831 17.0 0.973 52.0 0.909 86.0 0.828 18.0 0.971 53.0 0.907 87.0 0.826 19.0 0.9	4.0	0.991	39.0	0.937	73.0	0.860
7.0 0.986 42.0 0.931 76.0 0.853 8.0 0.985 43.0 0.929 77.0 0.851 9.0 0.983 44.0 0.927 78.0 0.848 10.0 0.982 45.0 0.925 79.0 0.846 11.0 0.980 46.0 0.923 80.0 0.843 12.0 0.979 47.0 0.920 81.0 0.841 13.0 0.978 48.0 0.918 82.0 0.838 14.0 0.976 49.0 0.916 83.0 0.838 14.0 0.976 49.0 0.916 83.0 0.838 15.0 0.975 50.0 0.914 84.0 0.833 16.0 0.974 51.0 0.912 85.0 0.831 17.0 0.973 52.0 0.909 86.0 0.828 18.0 0.971 53.0 0.907 87.0 0.826 19.0 0.	5.0	0.989	40.0	0.935	74.0	0.858
8.0 0.985 43.0 0.929 77.0 0.851 9.0 0.983 44.0 0.927 78.0 0.848 10.0 0.982 45.0 0.925 79.0 0.946 11.0 0.980 46.0 0.923 80.0 0.943 12.0 0.979 47.0 0.920 81.0 0.841 13.0 0.978 48.0 0.918 82.0 0.838 14.0 0.976 49.0 0.916 83.0 0.836 15.0 0.975 50.0 0.914 84.0 0.833 16.0 0.974 51.0 0.912 85.0 0.831 17.0 0.973 52.0 0.909 86.0 0.828 18.0 0.971 53.0 0.907 87.0 0.826 19.0 0.970 54.0 0.905 88.0 0.823 20.0 0.969 55.0 0.903 89.0 0.821 21.0 0	6.0	0.988	41.0	0.933	75.0	0.856
9.0 0.983 44.0 0.927 78.0 0.848 10.0 0.982 45.0 0.925 79.0 0.846 11.0 0.980 46.0 0.923 80.0 0.843 12.0 0.979 47.0 0.920 81.0 0.841 13.0 0.978 48.0 0.918 82.0 0.838 14.0 0.976 49.0 0.916 83.0 0.836 15.0 0.975 50.0 0.914 84.0 0.833 16.0 0.974 51.0 0.912 85.0 0.831 17.0 0.973 52.0 0.909 86.0 0.828 18.0 0.971 53.0 0.907 87.0 0.826 19.0 0.970 54.0 0.905 88.0 0.823 20.0 0.969 55.0 0.903 89.0 0.821 21.0 0.967 56.0 0.900 90.0 0.818 22.0	7.0	0.986	42.0	0.931	76.0	0.853
10.0 0.982 45.0 0.925 79.0 0.846 11.0 0.980 46.0 0.923 80.0 0.843 12.0 0.979 47.0 0.920 81.0 0.841 13.0 0.978 48.0 0.918 82.0 0.838 14.0 0.976 49.0 0.916 83.0 0.836 15.0 0.975 50.0 0.914 84.0 0.833 16.0 0.974 51.0 0.912 85.0 0.831 17.0 0.973 52.0 0.909 86.0 0.828 18.0 0.971 53.0 0.907 87.0 0.826 19.0 0.970 54.0 0.905 88.0 0.823 20.0 0.969 55.0 0.903 89.0 0.821 21.0 0.967 56.0 0.900 90.0 0.818 22.0 0.966 57.0 0.898 91.0 0.815 23.0 <td< td=""><td>8.0</td><td>0.985</td><td>43.0</td><td>0.929</td><td>77.0</td><td>0.851</td></td<>	8.0	0.985	43.0	0.929	77.0	0.851
11.0 0.980 46.0 0.923 80.0 0.843 12.0 0.979 47.0 0.920 81.0 0.841 13.0 0.978 48.0 0.918 82.0 0.838 14.0 0.976 49.0 0.916 83.0 0.836 15.0 0.975 50.0 0.914 84.0 0.833 16.0 0.974 51.0 0.912 85.0 0.831 17.0 0.973 52.0 0.909 86.0 0.828 18.0 0.971 53.0 0.907 87.0 0.826 19.0 0.970 54.0 0.905 88.0 0.823 20.0 0.969 55.0 0.903 89.0 0.821 21.0 0.967 56.0 0.900 90.0 0.818 22.0 0.968 57.0 0.898 91.0 0.815 23.0 0.965 58.0 0.896 92.0 0.813 24.0 <td< td=""><td>9.0</td><td>0.983</td><td>44.0</td><td>0.927</td><td>78.0</td><td>0.848</td></td<>	9.0	0.983	44.0	0.927	78.0	0.848
12.0 0.979 47.0 0.920 81.0 0.841 13.0 0.978 48.0 0.918 82.0 0.838 14.0 0.976 49.0 0.916 83.0 0.836 15.0 0.975 50.0 0.914 84.0 0.833 16.0 0.974 51.0 0.912 85.0 0.831 17.0 0.973 52.0 0.909 86.0 0.828 18.0 0.971 53.0 0.907 87.0 0.826 19.0 0.970 54.0 0.905 88.0 0.823 20.0 0.969 55.0 0.903 89.0 0.821 21.0 0.967 56.0 0.900 90.0 0.818 22.0 0.966 57.0 0.898 91.0 0.815 23.0 0.965 58.0 0.896 92.0 0.813 24.0 0.963 59.0 0.893 93.0 0.810 25.0 <td< td=""><td>10.0</td><td>0.982</td><td>45.0</td><td>0.925</td><td>79.0</td><td>0.846</td></td<>	10.0	0.982	45.0	0.925	79.0	0.846
13.0 0.978 48.0 0.918 82.0 0.838 14.0 0.976 49.0 0.916 83.0 0.836 15.0 0.975 50.0 0.914 84.0 0.833 16.0 0.974 51.0 0.912 85.0 0.831 17.0 0.973 52.0 0.909 86.0 0.828 18.0 0.971 53.0 0.907 87.0 0.826 19.0 0.970 54.0 0.905 88.0 0.823 20.0 0.969 55.0 0.903 89.0 0.821 21.0 0.967 56.0 0.900 90.0 0.818 22.0 0.968 57.0 0.898 91.0 0.815 23.0 0.965 58.0 0.896 92.0 0.813 24.0 0.963 59.0 0.893 93.0 0.810 25.0 0.962 60.0 0.891 94.0 0.807 26.0 <td< td=""><td>11.0</td><td>0.980</td><td>46.0</td><td>0.923</td><td>80.0</td><td>0.843</td></td<>	11.0	0.980	46.0	0.923	80.0	0.843
14.0 0.976 49.0 0.916 83.0 0.836 15.0 0.975 50.0 0.914 84.0 0.833 16.0 0.974 51.0 0.912 85.0 0.831 17.0 0.973 52.0 0.909 86.0 0.828 18.0 0.971 53.0 0.907 87.0 0.826 19.0 0.970 54.0 0.905 88.0 0.823 20.0 0.969 55.0 0.903 89.0 0.821 21.0 0.967 56.0 0.900 90.0 0.818 22.0 0.966 57.0 0.898 91.0 0.815 23.0 0.965 58.0 0.896 92.0 0.813 24.0 0.963 59.0 0.893 93.0 0.810 25.0 0.962 60.0 0.891 94.0 0.807 26.0 0.960 61.0 0.889 95.0 0.804 27.0 <td< td=""><td>12.0</td><td>0.979</td><td>47.0</td><td>0.920</td><td>81.0</td><td>0.841</td></td<>	12.0	0.979	47.0	0.920	81.0	0.841
15.0 0.975 50.0 0.914 84.0 0.833 16.0 0.974 51.0 0.912 85.0 0.831 17.0 0.973 52.0 0.909 86.0 0.828 18.0 0.971 53.0 0.907 87.0 0.826 19.0 0.970 54.0 0.905 88.0 0.823 20.0 0.969 55.0 0.903 89.0 0.821 21.0 0.967 56.0 0.900 90.0 0.818 22.0 0.966 57.0 0.898 91.0 0.815 23.0 0.965 58.0 0.896 92.0 0.813 24.0 0.963 59.0 0.893 93.0 0.810 25.0 0.962 60.0 0.891 94.0 0.807 26.0 0.960 61.0 0.889 95.0 0.804 27.0 0.959 62.0 0.887 96.0 0.801 28.0 <td< td=""><td>13.0</td><td>0.978</td><td>48.0</td><td>0.918</td><td>82.0</td><td>0.838</td></td<>	13.0	0.978	48.0	0.918	82.0	0.838
16.0 0.974 51.0 0.912 85.0 0.831 17.0 0.973 52.0 0.909 86.0 0.828 18.0 0.971 53.0 0.907 87.0 0.826 19.0 0.970 54.0 0.905 88.0 0.823 20.0 0.969 55.0 0.903 89.0 0.821 21.0 0.967 56.0 0.900 90.0 0.818 22.0 0.968 57.0 0.898 91.0 0.815 23.0 0.965 58.0 0.896 92.0 0.813 24.0 0.963 59.0 0.893 93.0 0.810 25.0 0.962 60.0 0.891 94.0 0.807 26.0 0.960 61.0 0.889 95.0 0.804 27.0 0.959 62.0 0.887 96.0 0.801 28.0 0.957 63.0 0.884 97.0 0.798 29.0 <td< td=""><td>14.0</td><td>0.976</td><td>49.0</td><td>0.916</td><td>83.0</td><td>0.836</td></td<>	14.0	0.976	49.0	0.916	83.0	0.836
17.0 0.973 52.0 0.909 86.0 0.828 18.0 0.971 53.0 0.907 87.0 0.826 19.0 0.970 54.0 0.905 88.0 0.823 20.0 0.969 55.0 0.903 89.0 0.821 21.0 0.967 56.0 0.900 90.0 0.818 22.0 0.966 57.0 0.898 91.0 0.815 23.0 0.965 58.0 0.896 92.0 0.813 24.0 0.963 59.0 0.893 93.0 0.810 25.0 0.962 60.0 0.891 94.0 0.807 26.0 0.960 61.0 0.889 95.0 0.804 27.0 0.959 62.0 0.887 96.0 0.801 28.0 0.967 63.0 0.884 97.0 0.798 29.0 0.955 64.0 0.882 98.0 0.795 30.0 0.954 65.0 0.879 99.0 0.789 31.0 0.950 </td <td>15.0</td> <td>0.975</td> <td>50.0</td> <td>0.914</td> <td>84.0</td> <td>0.833</td>	15.0	0.975	50.0	0.914	84.0	0.833
18.0 0.971 53.0 0.907 87.0 0.826 19.0 0.970 54.0 0.905 88.0 0.823 20.0 0.969 55.0 0.903 89.0 0.821 21.0 0.967 56.0 0.900 90.0 0.818 22.0 0.966 57.0 0.898 91.0 0.815 23.0 0.965 58.0 0.896 92.0 0.813 24.0 0.963 59.0 0.893 93.0 0.810 25.0 0.962 60.0 0.891 94.0 0.807 26.0 0.960 61.0 0.889 95.0 0.804 27.0 0.959 62.0 0.887 96.0 0.801 28.0 0.957 63.0 0.884 97.0 0.798 29.0 0.955 64.0 0.882 98.0 0.795 30.0 0.954 65.0 0.879 99.0 0.789 31.0 <td< td=""><td>16.0</td><td>0.974</td><td>51.0</td><td>0.912</td><td>85.0</td><td>0.831</td></td<>	16.0	0.974	51.0	0.912	85.0	0.831
19.0 0.970 54.0 0.905 88.0 0.823 20.0 0.969 55.0 0.903 89.0 0.821 21.0 0.967 56.0 0.900 90.0 0.818 22.0 0.966 57.0 0.898 91.0 0.815 23.0 0.965 58.0 0.896 92.0 0.813 24.0 0.963 59.0 0.893 93.0 0.810 25.0 0.962 60.0 0.891 94.0 0.807 26.0 0.960 61.0 0.889 95.0 0.804 27.0 0.959 62.0 0.887 96.0 0.801 28.0 0.957 63.0 0.884 97.0 0.798 29.0 0.955 64.0 0.882 98.0 0.795 30.0 0.954 65.0 0.879 99.0 0.792 31.0 0.950 67.0 0.875 100.0 0.789	17.0	0.973	52.0	0.909	86.0	0.828
20.0 0.969 55.0 0.903 89.0 0.821 21.0 0.967 56.0 0.900 90.0 0.818 22.0 0.966 57.0 0.898 91.0 0.815 23.0 0.965 58.0 0.896 92.0 0.813 24.0 0.963 59.0 0.893 93.0 0.810 25.0 0.962 60.0 0.891 94.0 0.807 26.0 0.960 61.0 0.889 95.0 0.804 27.0 0.959 62.0 0.887 96.0 0.801 28.0 0.957 63.0 0.884 97.0 0.798 29.0 0.955 64.0 0.882 98.0 0.795 30.0 0.954 65.0 0.879 99.0 0.792 31.0 0.950 67.0 0.875 100.0 0.789	18.0	0.971	53.0	0.907	87.0	0.826
21.0 0.967 56.0 0.900 90.0 0.818 22.0 0.968 57.0 0.898 91.0 0.815 23.0 0.965 58.0 0.896 92.0 0.813 24.0 0.963 59.0 0.893 93.0 0.810 25.0 0.962 60.0 0.891 94.0 0.807 26.0 0.960 61.0 0.889 95.0 0.804 27.0 0.959 62.0 0.887 96.0 0.801 28.0 0.957 63.0 0.884 97.0 0.798 29.0 0.955 64.0 0.882 98.0 0.795 30.0 0.954 65.0 0.879 99.0 0.789 31.0 0.952 66.0 0.877 100.0 0.789 32.0 0.950 67.0 0.875 100.0 0.789	19.0	0.970	54.0	0.905	88.0	0.823
22.0 0.966 57.0 0.898 91.0 0.815 23.0 0.965 58.0 0.896 92.0 0.813 24.0 0.963 59.0 0.893 93.0 0.810 25.0 0.962 60.0 0.891 94.0 0.807 26.0 0.960 61.0 0.889 95.0 0.804 27.0 0.959 62.0 0.887 96.0 0.801 28.0 0.967 63.0 0.884 97.0 0.798 29.0 0.955 64.0 0.882 98.0 0.795 30.0 0.954 65.0 0.879 99.0 0.789 31.0 0.952 66.0 0.877 100.0 0.789 32.0 0.950 67.0 0.875 100.0 0.789	20.0	0.969	55.0	0.903	89.0	0.821
23.0 0.965 58.0 0.896 92.0 0.813 24.0 0.963 59.0 0.893 93.0 0.810 25.0 0.962 60.0 0.891 94.0 0.807 26.0 0.960 61.0 0.889 95.0 0.804 27.0 0.959 62.0 0.887 96.0 0.801 28.0 0.957 63.0 0.884 97.0 0.798 29.0 0.955 64.0 0.882 98.0 0.795 30.0 0.954 65.0 0.879 99.0 0.792 31.0 0.952 66.0 0.877 100.0 0.789 32.0 0.950 67.0 0.875 100.0 0.789	21.0	0.967	56.0	0.900	90.0	0.818
24.0 0.963 59.0 0.893 93.0 0.810 25.0 0.962 60.0 0.891 94.0 0.807 26.0 0.960 61.0 0.889 95.0 0.804 27.0 0.959 62.0 0.887 96.0 0.801 28.0 0.957 63.0 0.884 97.0 0.798 29.0 0.955 64.0 0.882 98.0 0.795 30.0 0.954 65.0 0.879 99.0 0.792 31.0 0.952 66.0 0.877 100.0 0.789 32.0 0.950 67.0 0.875 100.0 0.789	22.0	0.966	57.0	0.898	91.0	0.815
25.0 0.962 60.0 0.891 94.0 0.807 26.0 0.960 61.0 0.889 95.0 0.804 27.0 0.959 62.0 0.887 96.0 0.801 28.0 0.957 63.0 0.884 97.0 0.798 29.0 0.955 64.0 0.882 98.0 0.795 30.0 0.954 65.0 0.879 99.0 0.792 31.0 0.952 66.0 0.877 100.0 0.789 32.0 0.950 67.0 0.875 100.0 0.789	23.0	0.965	58.0	0.896	92.0	0.813
26.0 0.960 61.0 0.889 95.0 0.804 27.0 0.959 62.0 0.887 96.0 0.801 28.0 0.957 63.0 0.884 97.0 0.798 29.0 0.955 64.0 0.882 98.0 0.795 30.0 0.954 65.0 0.879 99.0 0.792 31.0 0.952 66.0 0.877 100.0 0.789 32.0 0.950 67.0 0.875 100.0 0.789	24.0	0.963	59.0	0.893	93.0	0.810
27.0 0.959 62.0 0.887 96.0 0.801 28.0 0.957 63.0 0.884 97.0 0.798 29.0 0.955 64.0 0.882 98.0 0.795 30.0 0.954 65.0 0.879 99.0 0.792 31.0 0.952 66.0 0.877 100.0 0.789 32.0 0.950 67.0 0.875	25.0	0.962	60.0	0.891	94.0	0.807
28.0 0.957 63.0 0.884 97.0 0.798 29.0 0.955 64.0 0.882 98.0 0.795 30.0 0.954 65.0 0.879 99.0 0.792 31.0 0.952 66.0 0.877 100.0 0.789 32.0 0.950 67.0 0.875	26.0	0.960	61.0	0.889	95.0	0.804
29.0 0.955 64.0 0.882 98.0 0.795 30.0 0.954 65.0 0.879 99.0 0.792 31.0 0.952 66.0 0.877 100.0 0.789 32.0 0.950 67.0 0.875 0.875 0.875	27.0	0.959	62.0	0.887	96.0	0.801
30.0 0.954 65.0 0.879 99.0 0.792 31.0 0.952 66.0 0.877 100.0 0.789 32.0 0.950 67.0 0.875	28.0	0.957	63.0	0.884	97.0	0.798
31.0 0.952 66.0 0.877 100.0 0.789 32.0 0.950 67.0 0.875	29.0	0.955	64.0	0.882	98.0	0.795
32.0 0.950 67.0 0.875	30.0	0.954	65.0	0.879	99.0	0.792
	31.0	0.952	66.0	0.877	100.0	0.789
33.0 0.949 68.0 0.872	32.0	0.950	67.0	0.875		
	33.0	0.949	68.0	0.872		

Example

24.55 g 52.2 mL

4.5 %
0.990glm2

Theoretical Yield Calculation

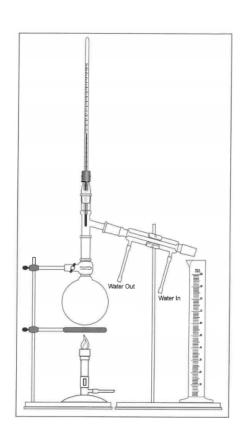
sucrose

ethanol

Molar mass = 342.3 g/mol

Molar mass = 46.07 g/mol

= 0.07172 mol

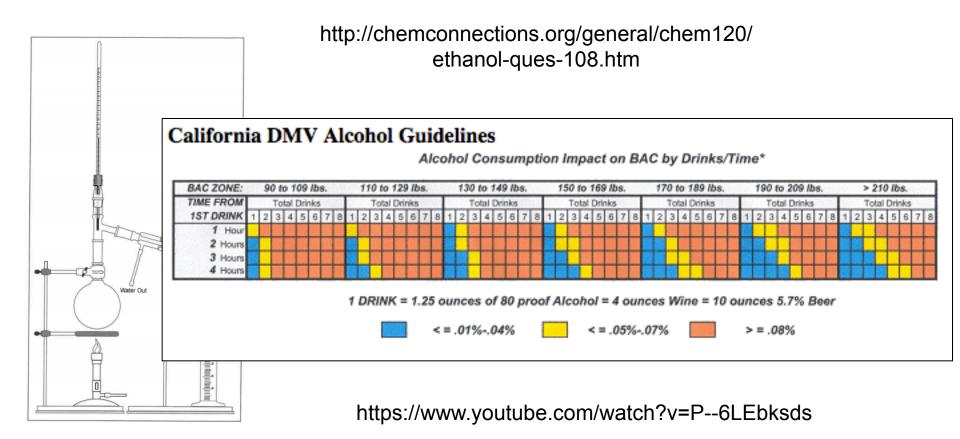

? mol $sucrose = 24.55 \, g / 342.3 \, g/mol$? mol $C_2H_5OH = \frac{4}{3} \, x \, mol \, sucrose$ = 0.2869 mol

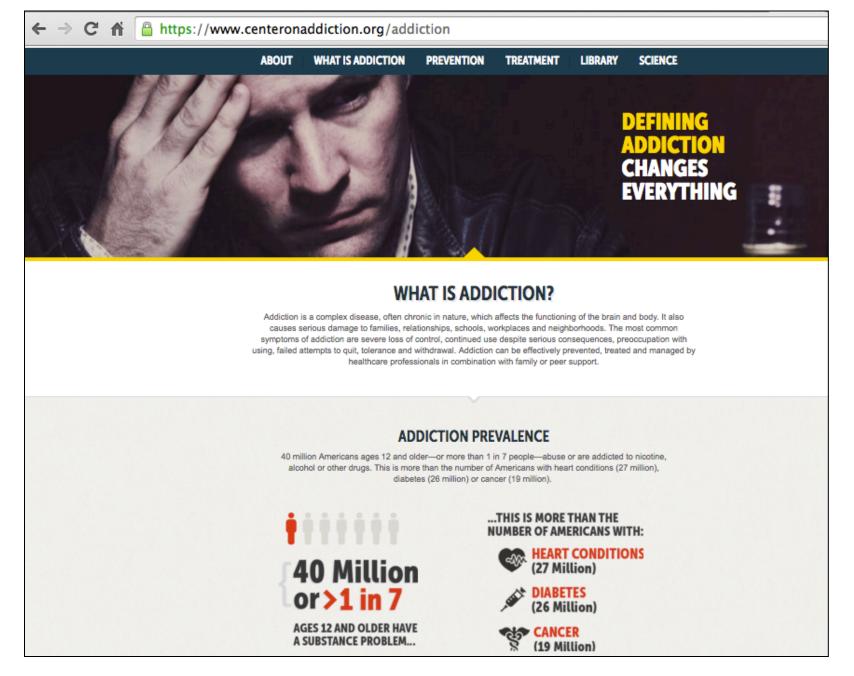
> $\mathcal{L}_{\mathcal{G}}$ (theoretical) = mol C_2H_5OH x 46.07 g/mol = 13.22 g

? g (actual) = [4.5%], that is: 4.5/100] x 52.2 m f.s. 0.990 g/m f.s.= 2.33q

% Yield = g (actual) / g (theoretical) x 100 = 17.6 %

Theoretical & Percent Yield


Experimentation:


Doing:

Laboratory Manual Fermentation-Distillation Procedure pp. 63-64; Report Form pp. 66-67; DUE: Next Week (Show Dr. R. distillate before disposing down the drain & have data initialed before leaving lab today.) POST LAB Questions DUE: Next

Week Pick up Handout

POST LAB Questions DUE: Next Week

POST LAB Questions; Handout

Turn in Next Week

http://chemconnections.org/general/chem120/ ethanol-ques-108.htm

ame:	Ethanol Post Lab Questions
	~
Using the Internet (http://chemconne	t & Web Reading List ections.org/general/chem120/alc-2010.html)
1. Explain the imp	portance of the protein zymase in the production of ethanol in a sentence or two.
2. What year was	ethanol first used in an internal combustion engine?
3. Show your calc	culations for the following problems.
A) How much ene pure ethanol (d =0 is -1367.6 ± 0.3 k	ergy (kJ) could be produced from the oxidation of one gallon of 0.789 g/mL)? The amount of energy produced per mole of ethanol J/mol.
B) How much ene	ergy (kJ) could be produced from the combustion of 1 gallon of gasoline), $d=0.69$ g/ml.? The amount of energy produced per mole of
isooctane is -5460	